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ABSTRACT 
 
 
 
This thesis documents the research, circuit design, and simulation testing of a 

VLSI ASIC which extracts phase angle information from a complex sampled signal using 

the arctangent relationship: φ = tan-1(Q/I).  Specifically, the circuit will convert the In-

Phase and Quadrature terms into their corresponding phase angle.  The design 

specifications were to implement the design in CMOS technology with a minimum 

transistor count and ability to operate at a clock frequency of 700 MHz.  Research on the 

arctangent function was performed to determine mathematical calculation methods and 

the CORDIC method was chosen to achieve the stated design specifications.  MATLAB 

simulations were used to calculate and verify accuracy and to implement Quine-

McClusky logic minimization.  T-SPICE netlists were generated and simulations were 

run to determine transistor and circuit electrical operation and timing.  Finally, overall 

circuit logic functionality of all possible input combinations was completed using a 

VHDL simulation program.   
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EXECUTIVE SUMMARY 
 
 

This thesis documents the research, circuit design, and testing of a Very Large 

Scale Integration (VLSI) Application Specific Integrated Circuit (ASIC) which extracts 

the phase information from a complex signal via the arctangent function.  The purpose of 

this chip design is for inclusion and use in a Digital Image Synthesizer (DIS) electronic 

warfare chip which generates false target radar images to counter wide band imaging 

Inverse Synthetic Aperture Radars (ISAR).  Specifically, the circuit will convert the In-

phase and Quadrature terms, comprised of eight data bits each, into the corresponding 

phase angle value expressed as a five-bit number.  The design specifications are to 

implement the Amplitude-to-Phase Converter in Standard Complementary Metal Oxide 

Semiconductor (SCMOS) technology with a minimum transistor count, and ability to 

operate at a clock frequency of 700 MHz. 

The first part of the thesis consists of arctangent function research to determine 

the different mathematical calculation methods.  The most efficient implementation 

method to achieve the above stated design specifications was determined to be the 

CORDIC (Coordinate Rotation Digital Computer) algorithm and, thus, circuit design was 

completed.  MATLAB simulations were used to verify calculation errors, determine 

noise margins, plot phase graphs, and to implement Quine-McClusky logic minimization.  

T-SPICE netlists were generated from the schematic and simulations were run to 

determine transistor and circuit electrical operation.  Circuit simulations included: power 

and current draw, speed of operation, noise margins, DC transfer characteristics, and the 

verification of both timing and logic functionality.  Finally, overall circuit logic 

functionality for all 65,536 input combinations was completed using a VHSIC (Very 

High Speed Integrated Circuit) Hardware Description Language (VHDL) program. 
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I. INTRODUCTION 

A. BACKGROUND OF THE DIGITAL IMAGE SYNTHESIZER 

The primary purpose and the raison-d’être for the design, development, and 

implementation of a phase converter is for its intended use in an electronic warfare chip.    

This chapter covers the Digital Image Synthesizer (DIS) and the mathematics required for 

its digital computer hardware implementation.  As detailed in the paper, A Single-Chip 

False Target Radar Image Generator for Countering Wideband Imaging Radars, the 

following describes the DIS (After [1]):  

Modern shipboard and airborne wideband synthetic aperture radars (SARs) and 
inverse synthetic aperture radars (ISARs) are capable of generating images of 
target objects.  Figures 1 and 2 (courtesy of the Tactical Electronic Warfare 
Division of the U.S. Naval Research Laboratory) show a photograph of the USS 
Crockett and an image of the ship obtained from a U.S. Navy AN/APS-137 ISAR.  
Such imaging capability is an advantage over previous technology because it 
improves the ability to identify the specific type of target, distinguish friend from 
foe, accurately guide weaponry, and defeat electronic protection such as false 
target decoys.  Thus, modern wideband imaging SARs and ISARs create a 
difficult ship defense problem.  For example, if an adversary is using a wideband 
imaging ISAR, an electronic protection system cannot synthesize a false target by 
just transmitting a signal that emulates a radar return off a single or a few 
scattering surfaces.  Instead, such a transmitted signal must emulate a coherent 
sequence of reflections with proper delay, phase, and amplitude that is similar to 
what would come from the multiple scattering surfaces at multiple ranges 
(distances from the radar) of an actual ship. 

 
Analog methods for generating false radar targets have included the use of 
acoustic charge transport (ACT) tapped delay lines and fiber optic tapped delay 
lines.  ACT devices are no longer commercially available and also have limited 
bandwidth, making them impractical against wideband imaging radars.  Optical 
devices are bulky and costly to manufacture, especially for the longer delay line 
lengths needed to synthesize a false target image of even a moderately-sized ship.  
However, the equations and algorithms needed to digitally synthesize a false 
target radar image have evolved considerably over the last several years.  With 
modern, digital signal processing (DSP) techniques and advanced VLSI 
fabrication processes, it is now possible to digitally synthesize a realistic false 
target radar image of even a large war ship such as an aircraft carrier.  

 
 
Figures 1 and 2 are reproduced below: 
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Figure 1.   USS Crockett (From [1]).  

 

Figure 2.   AN/APS-137 ISAR image of the USS Crockett (From [1]).  

 

Figure 3 shows the high-level circuit block diagram that illustrates the virtual 

architecture of the DIS.  The Q and I amplitude to phase conversion portion is highlighted 

in red and yellow: 
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Figure 3.   Block Diagram of the False Target Radar Image Synthesizer System (After 

[2]).  
 

Representing the virtual architecture as a mathematical one for hardware 

implementation, the intercepted chirp pulse, s, as a function of time, can be represented as 

a complex signal of the form [2]:   

 ( ) 22 ( 2 )rect dj f t tts t e π

τ
+∆ =  

 
τ  (1.1) 

where: 
 

• df Doppler frequency (between DRFM platform and ISAR), 

•   Pulse width,  τ
•  Modulation bandwidth, ∆

 and the definition of the ‘rect’ function is [2]: 

3 



 

11 for
2

rect .
10 for
2

t
t

t
τ
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The intercepted chirp pulse is sampled and quantized via an Analog-to-Digital 

Converter (ADC) generating the eight-bit In-Phase, I, and Quadrature, Q, data.   The DIS 

chip accepts as inputs this Q and I data and, via the amplitude-to-phase conversion 

circuit, produces a corresponding phase angle, φ.  Mathematically using Euler’s Theorem, 

the complex exponential of Equation 1.1 can be represented as a sum of cosine and sin 

terms:  

  (1.3) cos sin .jxe x j± = ± x

The ADC converter samples the waveform 90° out of phase to generate the cos x and sin 

x terms for each I and Q data set, respectively, the real and imaginary parts of the 

complex signal.  To determine the corresponding phase value of the Q and I data set, the 

phase angle can be expressed as [2]:  

 ( ) ( ){ }
( ){ }

Im 2,
Re 2 pk

s t
m n

s t
πφ

  = ∠ 
  

,  (1.4) 

where: 

•  ∠ , the angle of the parenthesized arguments, then quantized to kp bits, 

• ( ){ }Im s t , imaginary Quadrature Term, Q, and 

• ( ){ }Re s t , real In-Phase Term, I. 

Stated another way, this represents the inverse (arc) tangent function because this 

function produces a phase angle based upon its argument:  

  (1.5) -1tan ( / )z Q= I

which is then subsequently quantized to 2 pk = 25 = 32 values as the DIS hardware 

operates on five-bit phase data.   

4 



Therefore, in order to generate the phase value  from Q and I data, it is 

necessary to implement the arctangent function in hardware.  This thesis thereby 

contributes to the DIS chip and is both an essential and critical module. 

( ,m nφ )

 

B. PRINCIPAL CONTRIBUTIONS 

Initially, research was conducted on the arctangent function to determine its 

characteristics and the different means of calculation.  In an effort to minimize transistor 

count, methods that avoid division and multiplication were further investigated.  

Calculus, polynomial approximations, and direct logic function implementation were 

quickly excluded as options because they would require high transistor counts and/or 

produced excessive errors.   

A lot of research was spent on the Look Up Table (LUT), as it is fundamentally a 

very simple way to implement the amplitude to phase conversion.  Indeed, the Q and I 

values can be used as indexes to a table where a five-bit result is stored in the 

corresponding addressed location.  Unfortunately, the LUT size would be very large 

(65,536 entries) and thus methods to reduce the table size were considered.  Primarily, 

only one quadrant of arctangent data would be required to be stored in a LUT because the 

remaining three quadrant results could be determined by the sign of the input Q and I 

values.  Simple addition can be performed to translate the first quadrant phase result to 

another quadrant.  Reducing the number of bits by truncating the eight-bit Q and I data to 

seven-bits was also researched, and discarded because of high resulting errors. 

The CORDIC implementation method was researched to determine the required 

transistor count and compared to the LUT approach.  The CORDIC algorithm can be 

unrolled, which leads to a very nice pipelined implementation.  Since the number of 

transistors to implement CORDIC is approximately one quarter the amount needed for a 

one-quadrant LUT, the CORDIC method was chosen and circuit design undertaken. 

Using the S-Edit circuit design CAD tool from Tanner Research [3], the Rotation 

level was first designed and debugged.  Mask layout of this circuit was completed in the 

Tanner Research layout editor L-Edit, and the results verified via test vectors using the 

5 



circuit simulator T-SPICE.  A general vector level was designed, and individual CORDIC 

iteration levels were tailored using the general level by changing hardwired constants and 

shifts.  After renditions to tweak the design and debug it, a completed schematic was 

finished and laid out which produced a nine-bit, z, phase result.   

  A conversion circuit is required to convert the nine-bit phase result produced by 

the CORDIC algorithm into a five-bit value for use in the DIS circuit.  Different 

implementation options including ROM, comparators, Sum-of-Products minimal logic, 

and multiplexers were considered.  A ROM (essential to a LUT approach) and 

multiplexers would have a very large gate count and were, therefore, excluded as options.  

The comparator implementation method was fundamentally the most straightforward, 

elegant, and simple to implement, but suffered from having approximately three times 

more logic gates than a minimal sum-of-products implementation.  Quine-McClusky 

minimization algorithms were run using MATLAB to generate the five logic functions 

(one function for each bit), which were subsequently designed in S-Edit and laid out in L-

Edit.   

At this point in the research, a completed schematic and mask layout was finished 

and test vector cases simulated using T-SPICE and verified.  As a final functional test of 

the circuit, the entire schematic was exported to a VHDL program and tested for all 

65,536 possible inputs, and phase result errors were found for some Q and I input vectors.  

We determined that the number of bits used in the CORDIC hardware for precision was 

insufficient, and the circuit was fixed to account for them.  Unfortunately, the previously 

finished mask layout would have to be redesigned, as it could not be easily patched to 

account for the new circuit changes, and as such, this old mask layout is not included as 

part of this thesis.  This updated schematic was re-verified for both functional and timing 

correctness, producing 100% correct results.  Mask layout of the updated schematic is to 

be completed at a later date. 

6 



C. ORGANIZATION OF THESIS 

 This thesis documents the research, hardware implementation considerations, 

design, and testing of a VLSI ASCI complex signal amplitude to phase conversion circuit 

for use in the DIS.  It is organized as follows: 

 Chapter II presents detailed research on the arctangent function and methods that 

can be used to calculate it.  These methods are examined to determine whether they meet 

the stated goals, and how they compare to each other in terms of accuracy, digital 

hardware transistor count, and minimum clock frequency of operation.   

 Chapter III presents the hierarchical progression of the circuit design of the 

complex signal amplitude-to-phase converter.  Important design considerations, 

techniques, and approaches are presented for the transistor up to the complete design. 

 Chapter IV summarizes the results of the thesis, key lessons learned, and 

recommendations for future work. 
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II. INVESTIGATION OF CONVERSION METHODS 

A. TASKS 

1. Aim 

The goal of this research was to design and implement an amplitude-to-phase 

conversion circuit for the inputs to the Digital Image Synthesizer (DIS) from a Digital 

Radio Frequency Memory (DRFM).  The basic algorithm is to extract a five-bit phase 

angle from eight-bit Quadrature and In-Phase inputs by performing the arctangent 

function.  

 

2. Implied Tasks 

• Determine the minimum transistor count hardware solution to implement the 

arctangent function by investigating different computational methods 

• Determine the most efficient method for digitally implementing an eight-bit Q 

and I amplitude to phase conversion circuit which produces a five-bit number 

• Design and test a pipelined optimum circuit able to run at a minimum of 700 

MHz, including architectural and logic design, verification, and simulation 

• Minimize circuit average power draw. 

 

B. GENERAL 

This chapter investigates the different means of implementing an amplitude-to-

phase conversion circuit.  It first covers information on the arctangent function to 

investigate its characteristics, as it is important to know the domain, range, and function 

dependency on the independent variable.  Within the guidelines of the implied tasks, 

those mathematical methods that show potential for digital implementation are further 

examined. 

 

1. The Arctangent Function of a Real Number 

The arctangent function:  y = tan-1 x is the inverse of the restricted function [4]:  
9 



 tan ,  .
2 2

y x xπ= − < < π  (2.1) 

For every real value of x, y = tan-1 x is the angle between −π/2 and π/2 whose tangent is x. 

The domain of the x values is −∞

1

 to +∞.  The graph of tan-1 x is symmetric about the 

origin, and is an odd function of x: 

 1tan ( ) tan .x x− − = − −  (2.2) 

From the Figure 4 graph of tan-1 x, it can be seen that tan-1 x has the same sign as x and 

that tan-1 0 = 0.  The red lines are the asymptotes that the function approaches as x goes to 

±∞. 

 
Figure 4.   Plot of the Arctangent Function. 

 

By visual inspection, it is easy to verify that most changes of the function occur 

for values of x between ± 15.  Values of x larger than this change incrementally more 

slowly as the asymptotic limits are approached.  Another observation is that the ranges of 

angles produced by the arctangent are 0º to 45º for 0 < x < 1.  Thus, to determine values 

of phase from 45 to 90º  for x > 1, one can calculate:  
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 1 1tan .
x

π −  −  
 

 (2.3) 

2. The Arctangent Function of a Complex Number 

For a complex number z = x + jy, given the real and imaginary parts, the 

arctangent function is (written in different formats) [5]:  

 -1a tan 2 ( , )  a tan( / )  tan ( / )   arg(   )x y y x y x x= = = yi+  (2.4) 

where:  

• y = Im{z}  

• x = Re{z}.   

The arctangent of the quotient y/x is the angle of the magnitude vector measured counter-

clockwise on the unit circle from the positive real x-axis.  The arg in Equation 2.3 stands 

for the argument of the complex number and represents the phase value of a complex 

number.  Figure 5 shows the complex plane, the four quadrants, and a sample angle 

measurement of a complex number vector shown in red. 

 
Figure 5.   Complex Plane Showing Example Angle Measurement. 

 

Figure 6 graphically displays the first quadrant phase values of tan-1(Q/I) for quadrant 

(positive) values of Q  and I.  The reader can verify the phase ranges from 0º to 90º 

within the first quadrant, as expected.  The different colors show different resulting  
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phase values for changing Q and I inputs.  Constant colors for changing Q and I inputs 

logically imply that the arctangent function generates the same phase value.  Consider 

two vectors of the form (Q,I): (5,5) and (10,10).  They both possess a 45º-phase value 

although they have different magnitudes. 

 
Figure 6.   First Quadrant Arctangent of a Complex Number. 

 

3. Five-Bit Phase Quantization 

The DIS uses a five-bit phase value that linearly increases from 0 to 31 as one 

maps out the unit circle in a counter-clockwise direction.  As it is not possible to 

represent every integer phase from 0º to 360º  using only 32 values, ranges of phase will 

be indistinguishable from one another.  Equivalently, the resolution of phase angles is:   

 5

360º 360º º= 11.25 .bit5 bits 2  values
=  (2.5) 

A tabular description showing five-bit decimal values verse corresponding degree values 

is shown as Table 1: 
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Output Number in Decimal vs. Phase in Degrees 
 

Number Phase Number Phase 
0 0 16 180 
1 11.25 17 191.25 
2 22.5 18 202.5 
3 33.75 19 213.75 
4 45 20 225 
5 56.25 21 236.25 
6 67.5 22 247.5 
7 78.75 23 258.75 
8 90 24 270 
9 101.25 25 281.25 
10 112.5 26 292.5 
11 123.75 27 303.75 
12 135 28 315 
13 146.25 29 326.25 
14 157.5 30 337.5 
15 168.75 31 348.75 

Table 1.   Output Number in Decimal vs. Phase in Degrees. 

 
With only five-bit phase resolution, all values of phase between 0º and 11.25º are 

indistinguishable, and similarly for 11.26º to 22.5º, etc.  This is important and will be 

discussed later in the conversion of a nine-bit phase value to five-bits.  A nine-bit number 

has 29 = 512 different values and is the minimum number of bits required to represent all 

360º integer numbers.   

 

C. AMPLITUDE-TO-PHASE CONVERSION METHODS 

There are several means to calculate the arctangent function including: 

• Calculus,  

• Look-up table, 

• Sum-of-Products Logic Block, 

• Polynomial approximation, and  

• Coordinate Rotation Digital Computer (CORDIC). 

The issue is to select a method that best meets the stated goals.  The simplest hardware 

method which possesses a minimum gate count is required and, as such, computational 
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and gate heavy methods which involve multiplication, or worse, division should be 

avoided.  Consider an eight by eight multiplier shown in Figure 7: 

 

 
Figure 7.   8 x 8 Combinational Multiplier (From [6]). 

 

Terms yixi are product terms generated by the logical AND function, and graphical boxes 

with the plus symbol are one-bit Full Adders.  Implementation of multiplication has many 

logic gates and correspondingly long combinatorial delay.  Division in hardware is one of 

most complex and difficult to achieve at high speeds.  It is very hardware intensive, slow, 

and requires high bit precision and/or many iterations to produce accurate results.  

Therefore, methods that do not require the computation of Q/I or have multiplication are 

to be favored. 
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1. Calculus 

Calculus methods involve limits and series.  The derivative of the arctangent may 

be defined as [4]:  

 1
2

1tan
1

d x
dx x

− =
+

 (2.6) 

and, therefore by integration, the arctangent function can be calculated [4]: 

 1
2

1tan .
1

x dx
x

− =
+∫  (2.7) 

Alternatively, for a complex number, z, it can be equated log-arithmetically [5]: 

 1tan log .
2
i i zz

i z
− += ⋅  − 


  (2.8) 

To implement a calculus method would require the determination of x2, a division 

of Q/I to produce x, a multiplication of x times x, followed by an addition and division 

operation to produce 21 )1 ( x+ .  Subsequently, a large number of summations would be 

required to closely approximate the integration.  As such, further consideration of a 

calculus hardware implementation was abandoned. 

2. Polynomial Approximation 

The arctangent function may be represented as a Taylor series [4]: 

 
3 5 7 2 1

1

0

( 1)tan ...     1
3 5 7 2 1

n n

n

x x x xx x x
n

⋅ +∞
−

=

− ⋅= − + − + = ≤
⋅ +∑  (2.9) 

and it is obvious by inspection that a large number of multiplications and divisions are 

required.  Using MATLAB, a 15th-order polynomial approximation to the arctangent 

function was coded.  Figure 8 shows a plot of atan(x) vs. the polynomial approximation 

and the resulting large error between the functions is readily apparent.  To more closely 

approximate the arctangent function, an even higher order polynomial would be required.  

As hardware implementation would require many multiplications, divisions, and 

additions, and because even a 15th-order polynomial approximation generates a large 

resulting error, further consideration was not given to implementing a polynomial  
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Figure 8.   15th Order Polynomial Approximation to atan(x). 

approximation. 

3. Look Up Table 

One of the issues behind computationally calculating the arctangent is the 

necessity to determine the integer division of Q/I.  A lookup table (LUT) allows inherent 

computation of the division because the actual value of tan-1(Q/I) can be programmed 

into the table and hence this is a strong favorite for implementation.  Of all methods 

studied, it is the most simple.  Indexes into the table are the values of Q and I, and the 

value at that addressed location is the corresponding result stored as a five-bit number.  

Figure 9 shows all four quadrants of tan-1(Q/I) with eight-bit Q and I inputs.  There are 

65,536 different phase values, as there are 28 times 28 = 216 possible input combinations.  

The plot was generated in MATLAB using short floating-point precision calculations.  

The representation of the eight-input Q and I data is a signed two’s complement number 

and, therefore, the range of values is –128 to +127.  Figure 10 shows the same results 

with the resulting phase quantized to five-bits.  There are now only 32 different phases 

(colors), showing 11.25° degree “steps”.   
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Figure 9.   Arctangent(Q/I) – Floating Point Precision. 

 

 
Figure 10.   Arctangent(Q/I) – Floating Point Precision, Quantized to 32 Values. 
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A 16-bit input LUT would require 65,536 entries with each address containing a 

five-bit value.  This would be a very large transistor array to implement and would 

require on the order: of 65,536 locations * 5 FETs = 328k FETs, not including decoding 

circuitry.  Research was then done to determine if the LUT size could be reduced.  As a 

particular quadrant of any given phase is determined by the sign values of the Q and I 

inputs, the LUT is inherently redundant.   It is only necessary to look up one quadrant of 

stored arctangent data because the phase values of Q and I inputs to other quadrants can 

be determined through rotation by the addition of a constant phase.  Some calculators 

operate on this same principle and require the user to verify that the answer is correctly 

translated.  For example, consider data input of (5,−5) shown in Figure 11: 

 

 

Figure 11.   Example: Q = 5, and I = 5, Phase Angle is 135°. −

the Ti89 calculator gives the result:  

1 5tan 0.785398 rad 45
5 4

π−   = − = −   = − − 
 

The addition of 180° would translate the answer to the second quadrant: 

180° + ( 45°) = 135−  

which is the correct answer.  Referring to Figure 5, for positive values of Q and I, the 

values of phase lie in the range of 0° to 90°, and the procedure to use to translate a one-

quadrant LUT would be: 
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1)   If Q or I are negative, convert the number to a positive value via the two’s 

complement.  Store a sign bit result that this was done; one bit each for Q 

and I. 

2) With both Q and I now positive numbers, index into a first quadrant LUT 

and read the five-bit phase angle. 

3) Based on the stored sign bits, if: 

 i. Q > 0 and I < 0, second quadrant, then angle = angle + 90° 

 ii. Q < 0 and I < 0, third quadrant, then angle = angle +180° 

 iii. Q < 0 and I > 0, fourth quadrant, then angle = angle +270°. 

Thus, a one quadrant LUT would only require 16,384 addresses * 5 FETs/address = 82k 

FETs, plus some addressing-decoding control logic and a five-bit adder.  A transistor 

count of saving is roughly one-fourth.  Figure 12 shows the fourth quadrant portion of a 

five-bit Q and I LUT as an example, where Excel calculated the values stored.  The color 

fill shows groups of 11.25° quantized five-bit values, and thus groupings of 

indistinguishable phase values.   

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-15 0 -4 -8 -11 -15 -18 -22 -25 -28 -31 -34 -36 -39 -41 -43 -45
-14 0 -4 -8 -12 -16 -20 -23 -27 -30 -33 -36 -38 -41 -43 -45 -47
-13 0 -4 -9 -13 -17 -21 -25 -28 -32 -35 -38 -40 -43 -45 -47 -49
-12 0 -5 -9 -14 -18 -23 -27 -30 -34 -37 -40 -43 -45 -47 -49 -51
-11 0 -5 -10 -15 -20 -24 -29 -32 -36 -39 -42 -45 -47 -50 -52 -54
-10 0 -6 -11 -17 -22 -27 -31 -35 -39 -42 -45 -48 -50 -52 -54 -56
-9 0 -6 -13 -18 -24 -29 -34 -38 -42 -45 -48 -51 -53 -55 -57 -59
-8 0 -7 -14 -21 -27 -32 -37 -41 -45 -48 -51 -54 -56 -58 -60 -62
-7 0 -8 -16 -23 -30 -36 -41 -45 -49 -52 -55 -58 -60 -62 -63 -65
-6 0 -9 -18 -27 -34 -40 -45 -49 -53 -56 -59 -61 -63 -65 -67 -68
-5 0 -11 -22 -31 -39 -45 -50 -54 -58 -61 -63 -66 -67 -69 -70 -72
-4 0 -14 -27 -37 -45 -51 -56 -60 -63 -66 -68 -70 -72 -73 -74 -75
-3 0 -18 -34 -45 -53 -59 -63 -67 -69 -72 -73 -75 -76 -77 -78 -79
-2 0 -27 -45 -56 -63 -68 -72 -74 -76 -77 -79 -80 -81 -81 -82 -82
-1 0 -45 -63 -72 -76 -79 -81 -82 -83 -84 -84 -85 -85 -86 -86 -86
0 0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  

Figure 12.   Fourth Quadrant Five-bit Arctangent LUT. 
 

The LUT approach has several different advantages and disadvantages.  The 

computation of tan-1(Q/I) can be completed in one simple step by the logical use of Q and 

I as indices into the table.  By only using the first quadrant of the LUT, the number of 

transistors required can be minimized.  Sign values of Q and I can be used to add a 

constant phase to the output which only requires a small five-bit hardware implemented 
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adder.  On the downside, fairly large decoding circuitry is needed, and a one-quadrant 

LUT is still large in terms of transistor count.  Thus, the LUT approach was decided 

against for implementation of the amplitude to phase conversion circuit. 

 

4. Sum-of-Products Logic Block 

The amplitude to phase conversion can (theoretically) be accomplished  

directly by a logic function that requires a minimum of three logic levels of gates: NOT-

AND-OR, or via Demorgan’s Theorem, NOT-NAND-NAND.  Mano explains in Digital 

Design [7]: 

The complexity of the digital logic gates that implement a Boolean 
function is directly related to the complexity of the algebraic expression which the 
function is implemented.  Although the truth table representation of a function is 
unique, expressed algebraically, it can appear in many different forms.  Boolean 
functions may be simplified by algebraic means… 

 

Minimization methods include Karnaugh Maps, Quine-McClusky (a tabular 

algorithm), and heuristic methods such as the Expresso program.  The Sum-of-Products 

(SOP) uses minterms (output of the function is true or a logical one) to form the function 

expression.  The product denotes the AND operation and the sum denotes the OR 

operation.  As an example, a Full Adder function expressed in sum of minterms is: 

 
( , , ) (1, 2, 4,7) ' ' ' ' 'F x y z x y z x y z x y z x y z= = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∑  

There are impracticable issues with implementing large functions as direct logic 

functions.   The amplitude-to-phase conversion circuit has a minimum of 16 inputs, not 

including a Clk input for registers, and therefore, the number of possible output 

combinations is , an incredibly large number!  There are five bits produced by the 

phase conversion and, thus, five different functions are required to be implemented.  

Quine-McClusky minimization on a nine-input function took 10 computing days on a 1.4 

GHz Pentium IV machine.  As the number of possible output functions increases (the 

number of inputs increases), the time to tabular search and minimize the function grows 

exponentially.  A 16-bit input function would take an exceedingly long time to compute.  

Second, a very large number of function terms would be generated, well exceeding fan 

1622
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out and fan in limitations of the logic gates.  As a test, Professor Fouts used Expresso to 

generate the logic equations to produce five-bit output amplitude-to-phase conversion 

circuit of 16 inputs.  The time of computation took three days, which is orders of 

magnitude faster than a Qunie-McClusky computation.  However, Expresso does not 

guarantee a minimal solution.  The gate count to implement the functions via Expresso 

were: 

First Plane of Logic Gates:  
• 0 inverters 
• 1, 2-input NAND 
• 5, 3-input NAND 
• 1, 4-input NAND 
• 1, 5-input NAND 
• 26, 6-input NAND 
• 100, 7-input NAND 
• 232, 8-input NAND 
• 432, 9-input NAND 
• 627, 10-input NAND 
• 857, 11-input NAND 
• 755, 12-input NAND 
• 557, 13-input NAND 
• 182, 14-input NAND 
• 16, 15-input NAND. 

 
 Second Plane of Logic Gates:  

• 109-input NAND to generate output bit 4 
• 233-input NAND to generate output bit 3 
• 784-input NAND to generate output bit 2 
• 1429-input NAND to generate output bit 1 
• 2251-input NAND to generate output bit 0. 
 

The total transistor count equaled 92,468 FETs, not including required buffers.  Brute 

force SOP implementation of the amplitude to phase conversion is, therefore, not a viable 

option.  

 
5. CORDIC 

A Coordinate Rotation Digital Computer (CORDIC) algorithm is a class of 

iterative shift and add algorithms for rotating vectors in a plane until a result converges to 

any desired precision or error.  The error is proportional to the number of iterations 
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performed, unlike analytic iterative processes.  In a simple operation, CORDIC performs 

a sequence of rotations on two-dimensional vectors using a series of specific incremental 

rotation angles selected so that each is performed by a shift and add operation [8].  

Rotation of unit vectors provides a way to accurately compute trigonometric, logarithmic, 

exponential, square root, and hyperbolic functions, as well as a mechanism for computing 

the magnitude and phase angle of an input vector.  The rotation of a vector is executed by 

multiplying it by a series of constant phases, where the multiplication is always a power 

of two.  Thus, by shifting the vector (multiply by one-half or divide by two), no actual 

multiplication hardware is required.  CORDIC generally produces one additional bit of 

accuracy for each iteration [8]. 

 

Mathematically describing the basic principles from the CORDIC FAQ [After 8]: 

Given a complex value:  C  = Ic  + jQc 
create a rotated value:   C' = Ic' + jQc' 
by multiplying by a rotation value: R  = Ir  + jQr 

 
1. When multiplying a pair of complex numbers, their phases add and their 
magnitudes multiply: 

    Ic' = Ic·Ir − Qc·Qr To add R's    
from phase C: C' = C·R 

    Qc' = Qc·Ir + Ic·Qr 

    Ic' = Ic·Ir + Qc·Qr To subtract R's 
phase from C:  C' = C·R*

    Qc' = Qc·Ir − Ic·Qr 
Table 2.   Multiplying Complex Numbers. 

 
2. To rotate by +90°, multiply by R = +j. Similarly, to rotate by -90°, 
multiply by R = −j: 

 Ic' = −Qc To add 90°: 
Qc' =  Ic 

(negate Q, then swap) 

Ic' =  Qc 
To subtract 90°: 

Qc' = −Ic 
(negate I, then swap) 

Table 3.   Rotating by ±90°. 
3. To rotate by phases of less than 90°, successively multiply by numbers of 
the form "R = 1 ± jK" where K will be decreasing in powers of two, starting with 
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20 = 1.0.  The symbol "L" designates the power of two itself: 0, −1, −2, etc.   
Since the phase of a complex number "I + jQ" is atan(Q/I), the phase of "1 + jK" 
is atan(K). Likewise, the phase of "1 − jK" = atan(−K)  =  −atan(K).  To add 
phases "R = 1 + jK" is used; to subtract phases "R = 1 − jK". Since the real part of 
this, Ir, is equal to one, the table of equations can be simplified to add and 
subtract phases for the special case of CORDIC multiplications to: 

Ic' = Ic − K·Qc = Ic − (2-L)·Qc  To add a phase, multiply 
by R =1 + jK: Qc' = Qc + K·Ic = Qc + (2-L)·Ic 

Ic' = Ic + K·Qc = Ic + (2-L)·Qc To subtract a phase, 
multiply by R =1 − jK: Qc' = Qc − K·Ic = Qc − (2-L)·Ic 

Table 4.   Add/subtract phases less than 90°. 

Table 5 details the phases and magnitudes of each of these multiplier 
values, listing values of L, starting with 0, and shows the corresponding values of 
K, phase, magnitude, and CORDIC Gain.  Each rotation has a magnitude greater 
than 1.0 for using rotations of the form "1 + jK", which is usually undesirable, but 
unimportant in the calculation of the phase of a vector. The CORDIC Gain 
column in the table is a cumulative magnitude calculated by multiplying the 
current magnitude by the previous magnitude. It converges to about 1.647; 
however, the actual CORDIC Gain depends on how many iterations are done.  

L K = 2-L R = 1 + jK 
Phase of R
in degrees
= atan(K) 

Magnitude of R CORDIC Gain 

0 1.0 1 + j1.0 45.00000 1.41421356 1.414213562 

1 0.5 1 + j0.5 26.56505 1.11803399 1.581138830 

2 0.25 1 + j0.25 14.03624 1.03077641 1.629800601 

3 0.125 1 + j0.125 7.12502 1.00778222 1.642484066 

4 0.0625 1 + j0.0625 3.57633 1.00195122 1.645688916 

5 0.03125 1 + j0.031250 1.78991 1.00048816 1.646492279 

6 0.015625 1 + j0.015625 0.89517 1.00012206 1.646693254 

7 0.007813 1 + j0.007813 0.44761 1.00003052 1.646743507 

... ... ... ... ... ... 

Table 5.   CORDIC Vectoring Flow (After [8]). 

23 



There are two operations to the CORDIC algorithm for trigonometric 

calculations: 

1. Rotation – the vector is rotated by a specified angle; and 

2. Vectoring – the vector is rotated to the x-axis while recording the angle 

required to make that rotation. 

In order to calculate phase, the Rotation step is completed using the angle ±90°.  The 

objective is to rotate the vector to the right half of the complex plane so that the vector 

can subsequently be vectored to the positive x-axis.  The sign of the Q data determines 

whether an addition or subtraction takes place.  If the phase is positive, rotate by −90°, 

and if the phase is negative, rotate by +90°.  After the initial Rotation, CORDIC 

Vectoring as per Table 5 is executed, and in each addition/subtraction step, the actual 

number of degrees rotated is accumulated.  After the requisite number of rotations to 

calculate a result with a desired maximum error, the phase of the complex number is the 

negative of the rotation required to bring it to a phase of zero.  Consider a CORDIC 

Implementation example:  given a complex number z = a + bj, for example z0 = −8 + 4j, 

determine the phase φ. 
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Figure 13.   CORDIC Example: z0 = −8 + 4j. 

Beginning with the blue vector input from Figure 13, the following details the CORDIC 

steps: 

1. The sign of the Q data is positive (Q = 4), so the Rotation step is −90°.  

The new vector in red is produced as per Table 3: negate I and swap.  Store 

rotation of −90°.  The new vector is (4,8). 

2. Vector the new complex number, iteration L = 0.  The sign of Q is positive 

(Q = 8) so subtract 45° to produce the green vector as per Table 4.  Accumulate    

−45°, thus the phase equals: −90° + −45° = −135°.  New vector is (12,4). 

3. Vector the new complex number, iteration L = 1.  The sign of Q is positive 

(Q = 4) so subtract 26.56505° to produce the orange vector.  New accumulated 

phase is –161.56505°.  New vector is (14, −2). 
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4. Vector the new complex number, iteration L = 2.  The sign of Q is 

negative (Q = −2) so add 14.03624° to produce the plum vector.  New 

accumulated phase is –147.52881° etc.  

In tabular form, Table 6 continues the CORDIC to L = 17 iterations.  The resulting angle 

of –153.435° must then be negated, giving the proper phase angle of 153.435° for an 

input complex number of (−8,4). 

There are three key salient points to note from Table 6.  First, an eight-bit two’s 

complement number has the range of values from –128 to +127.  As the constant value of 

phase added or subtracted during each iteration has a decimal portion, the number of bits 

on Q and I must increase to hold these calculated values.  For example, the I data value 

during each iteration continues to positively grow in magnitude, and depending on input 

values of Q and I, may exceed +127.  Thus, more than eight integer bits are required to 

represent growing I values.  Second, as the Q data value is rotated to zero, it becomes a 

fractional number and requires high decimal precision, vice integer precision.  Otherwise 

the sign of the Q data may not be precise enough to properly determine the next iteration 

decision for addition or subtraction.  Third, after the initial Rotation, the values of I lie on 

the right half of the complex plane and are always positive values, while the values of Q 

still change positive and negative depending on the value of phase added.  Hence, I data 

bits larger than the MSB (I15) are always a logical zero after the Rotation step. 
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Table 6.   Detailed Calculation Flow of CORDIC Example (After [8]). 

Figure 14 shows MATLAB calculations of the CORDIC implementation of the 

amplitude to phase conversion, to nine iteration accuracy with eight-bit Q and I inputs, 

while Figure 15 shows the same results quantized to 32 bits.   
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Figure 14.   CORDIC Arctangent(Q/I). 

 

 
Figure 15.   CORDIC Arctangent(Q/I) Quantized to 32 Values. 
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The CORDIC method offers a hardware-simple, pipeline-capable, low-transistor 

count hardware implementation.  It can achieve any desired accuracy and avoids 

multiplication by using shifts by powers of two.  For this reason, the CORDIC method 

was chosen to implement the amplitude to phase conversion. 

 

D. CORDIC HARDWARE IMPEMENTATION 

There are three primary methods for the hardware implementation of the 

CORDIC algorithm.  These are [After 9]: 

• Bit Parallel Iterative CORDIC.  Each branch consists of an adder-subtractor 
combination, a shift unit and a register to buffer the output.  A finite-state 
machine is needed to control the multiplexers, the shift distance and the 
addressing of the constant values.  

  
Figure 16.   Bit Parallel Iterative CORDIC (From [9]). 

For each input vector, it takes n clocks to achieve n iterations, assuming that no 

additional pipelining is required.  Thus this is not conducive to a high speed 

implementation when, on each clock, new data is presented as inputs. 

• Bit Serial Iterative CORDIC.  Bit-serial means only one bit is processed at a 
time and hence the cross connections become one bit-wide data paths. The 
throughput becomes a function of [9]: 

_
_ _ * _

clock rate
number of iterations word width

 

which is not a fast implementation method. 
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Figure 17.   Bit Serial Iterative CORDIC (From [9]). 

 

• Bit Parallel Unrolled CORDIC. Instead of buffering the output of one iteration 
and using the same resources again, one can simply cascade the iterative 
CORDIC, which means rebuilding the basic CORDIC structure for each 
iteration. Consequently, the output of one stage is the input of the next one 
and in the face of separate stages two simplifications become possible. First, 
the shift operations for each step can be performed by wiring the connections 
between stages appropriately. Second, there is no need for changing constant 
phase values and they can therefore be hardwired.  The purely unrolled design 
only consists of combinatorial components and computes one value per clock 
cycle. Input values find their path through the architecture on their own and do 
not need to be controlled [9]. 
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Figure 18.   Bit Parallel Unrolled CORDIC [After 9]. 

 

Of the three methods, the Bit Parallel Unrolled implementation, shown in Figure 

18, provides the highest throughput speed and simplicity of design, albeit at the expense 

of replicated hardware iteration stages.  Therefore, this CORDIC hardware method was 

implemented.  A decision made outside the research of this thesis was the accuracy of the 

amplitude-to-phase conversion required.  MATLAB simulations were run by a fellow 

student, Fernando LeDantec, to determine the acceptable error.  It was decided that six 

iterations were sufficient for providing a result to the DIS architecture.  Table 7 shows the 

flow of the previous example using a six-iteration CORDIC hardware, including the 

binary values at each stage.  The highlighted number is the CORDIC produced result in 

degrees, and the red numbers show the input values and corresponding binary five-bit 

output. 
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Table 7.   Detailed Hardware Flow of a six-iteration CORDIC Implementation. 
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III. SCHEMATIC DESIGN OF THE Q/I PHASE CONVERTER 

A. HIERARCHICAL SCHEMATIC DESIGN OVERVIEW 

The circuit was designed using Tanner Research software, detailed in Appendix 

D, for MOSIS fabrication using the TSMC CL018 process.  This CMOS process has six 

metal interconnect layers and one polysilicon layer. The process is for 1.8-volt 

applications and has a thick oxide layer for making 3.3-volt transistors.   The 0.18-micron 

sized CMOS logic process uses epitaxial wafers and possesses the characteristics of 

fabricating: silicide blocks, thick gate oxide, electrostatic discharge (3.3 V), NT_N, deep 

n_well, ThickTopMetal (inductor), and MiM [10].   This chapter details: low level 

transistor and example gate electrical characteristics; secondary sub-circuits that are 

important in the amplitude to phase conversion circuit design; number system format; 

CORDIC Rotation and Vector level implementation; 9-to-5-bit conversion; and circuit 

verification.  Appendix B details the MOSIS TSMC 0.18-micron Field Effect Transistor 

Parameters.    

 

B. TRANSISTORS 

1. N-FET 

The N-channel Field Effect Transistor (N-FET) is modeled in S-Edit as a symbol 

and has no schematic representation.  As it is a lowest level circuit building block, it is 

declared via a property definition for T-SPICE netlist extraction.  The T-SPICE definition 

of the N-FET:   

M# %[1] %[2] %[2] %{B} CMOSN W=5*lambda L=2*lambda 

AS=5.5*lambda*5*lambda AD=5.5*lambda*5*lambda PS=5*lambda + 

5.5*lambda + 5*lambda + 5.5*lambda PD=5*lambda + 5*lambda + 5.5*lambda 

+ 5.5*lambda 

Salient points are the transistor size of width of five lambda and length of two 

lambda, where lambda is 0.09x10-6 meters. These sizes can be changed to make different 

sized FETs for different transistor characteristics, most importantly, gain and current 
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sourcing/sinking capabilities.  A FET of width 0.45-microns and length of 0.18-microns 

is the minimum sized possible for the CL018 fabrication process.  The other parameters 

defined for the FET are areas for capacitance calculations.  Figure 19 shows the S-Edit 

symbol, detailing the Gate (G), Source (S), Drain (D), and substrate connection (B).  It 

should be noted that all ports are unidirectional, i.e., source to drain current flow, because 

this is important for VHDL extraction and simulation.   

 
Figure 19.   N-FET. 

 

2. P-FET 

Similarly, the P-channel FET is a property and is defined:  

M# %[2] %{G} %{S} %{B} CMOSP W=5*lambda L=2*lambda 

AS=5*lambda*5.5*lambda AD=5*lambda*5.5*lambda PS=5*lambda + 

5*lambda + 5.5*lambda + 5.5*lambda PD=5*lambda + 5*lambda + 5.5*lambda 

+ 5.5*lambda 

 

The P-FET symbol: 

 
Figure 20.   P-FET. 
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3. N/P-FET Current and Voltage – Drain to Source 

Figure 21 shows the IDS vs. VDS characteristic curves for the N-FET and, similarly, 

for the P-FET in Figure 22.   

 
Figure 21.   N-FET IDS vs. VDS. 

 
The MOSIS Parametric test results provide a threshold voltage VTN = VTP = 0.359V.  The 

applicable operating characteristics at the hatched data points on the above and below 

figures is summarized as Table 8:  

PFET 

VDS 

 

VGS 

 

IDS µA 

NFET 

VDS 

 

VGS 

 

IDS µA 

−1.000 −1.2 −51.793 1.004 1.2 153.691 

Table 8.   N/P-FET Operating Point Data. 

The current from Drain to Source of the FET can be first order equated as [11]: 
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where: 

• β is the transistor gain factor and is used in the calculation of 

transconductance, 

• VGS  is the voltage from Gate to Source, and 

• VT  is the threshold voltage. 

 
Figure 22.   P-FET IDS vs. VDS. 

 

Calculations of the gains is therefore: 
3
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2 2
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C. LOGIC GATES 

This section provides an overview of the most basic CMOS gates, their noise 

margins, transfer functions, and operating characteristics.  It is not all-inclusive, but is 

provided to show some of the electrical properties and characteristics that compose the 

amplitude-to-phase converter design. 

 
1. Inverter 

An N-FET and P-FET combined in series form an inverter when their gates and 

drains are tied together, and is one of the most basic CMOS logic cells.  Figure 23 shows 

the schematic (bottom right) and symbol (top left) for the inverter:    

 
Figure 23.   Inverter Symbol (top left) and Schematic (right). 

 
Logically, an inverter provides an output 180° phase shift of the input signal and thereby 

provides the logic transfer function NOT, or complement.  In CMOS inverters, the gate 

threshold voltage is dependant on the βN /βP ratio. A ratio of one allows a capacitive load 
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to charge and discharge in equal times by providing equal current-source and –sink 

capabilities as it relates to the mobility of holes being less than the mobility of electrons.  

It also affects the allowable noise voltage on the input of a gate so that the output will not 

be affected [After 11].  The ratio may be calculated to be: 

2.969.N

P

β
β

=  

Another important design factor is that the gain is directly proportional to the 

transistor width and length.  For N-FETs [11]:  

 N N
N

ox N

W
t L

µ εβ
 

= 
 

  (3.2) 

where:  

• µ is the effective surface mobility of the carriers in the channel, 

• ε is the permittivity of the gate insulator, 

• tox is the thickness of the gate insulator, 

• WN is the width of the transistor channel, and 

• LN is the length of the channel. 

Therefore, a three times sized P-FET would (approximately) provide a βN /βP ratio of one, 

but would also require three times more layout area.  A decision was make to implement 

all lower-level cells using minimum sized P-FETs to conserve layout, rather than to 

equate noise margins.   Figure 24 shows three different βN /βP ratios for differently sized 

P-FETs where the NFET size is five lambda.  Notice that the three-to-one sized P-FET to 

N-FET (in yellow, βN /βP ratio of one) transitions through the center voltage of 0.9V.  The 

voltage out vs. voltage in plot characteristics is used to calculate the gates noise margins. 
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Figure 24.   βN /βP Ratios and Inverter Noise Margins. 

 

Noise margins low and high are determined via Equations 3.3 and 3.4 respectively [11]:  

 
MAX MAXL IL OLNM V V= −  (3.3) 

 
Min MinH OH IHNM V V= −  (3.4) 

where: 

• NML – noise margin low, 

• NMH – noise margin high, 

• VILMAX – voltage input low maximum, 

• VOLMAX – voltage output low maximum, 

• VOHMIN – voltage output high minimum, and  

• VIHMIN – voltage input high minimum. 

 
The data from Figure 24 was imported into MATLAB and the program code 

listed at Appendix A was used to calculate the noise margins.  Results are listed in Table 

9. 
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      Noise     
Voltage Value Units Margins Value Units 
VOHMIN 1.73 V 
VIHMIN 0.87 V 

NMH 0.86 V 

VILMAX 0.572 V 
VOLMAX 0.082 V 

NML 0.49 V 

Table 9.   Inverter Noise Margins. 

It should be noted that the noise margins are uneven because the βN /βP ratio equals 

2.969, the green plot from Figure 24.  Values determined and displayed in Table 10 were 

determined using T-SPICE netlists where the circuit had an input shaping circuit of four 

inverters and the inverter test circuit possessing a load of seven other inverters.   

 
Name Value Units 

TR 0.290  ns 
TF 0.129  ns 

TPDLH  0.172 ns 
TPDHL 0.063  ns 
IPEAK −133.573 µΑ 

Voltage 1.8 V 
PPEAK 240.43 µW 

Table 10.   Inverter Electrical Parameters. 

 
The figures supporting the above table values are listed as Figures 25 through 28.  

Applicable terms are [11]: 

• TR – rise time, the time for a waveform to rise from 10% to 90% of its steady-

state value, 

• TF – fall time, the time for a waveform to fall from 90% to 10% of its steady-

state value, 

• TPDLH – time of propagation delay low to high, the time difference between 

input transition (50%) and the 50% output level, 

• TPDHL – time of propagation delay high to low, the time difference between 

input transition (50%) and the 50% output level, 

• IPEAK – peak current draw, and 

• PPEAK – peak power draw. 
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Figure 25.   Inverter Proper Operation. 

 
Figure 26.   Inverter TF and TPDHL. 
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Figure 27.   Inverter TR and TPDLH. 

 

 
Figure 28.   Inverter Current Draw. 
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The peak power drawn by an inverter can be calculated using the equation: 
 
   Power = Voltage * Current    (3.5) 

 
which yields 240.34 µW. 

 

2. Pass Gates 

Combining an N-FET and P-FET in parallel forms the pass gate, also known as a 

complementary switch or transmission gate.  This circuit acceptably passes both a logic 

‘0’ and logic ‘1’ depending upon the CON and ~CON signals.  The pass gate is another 

basic CMOS logic circuit that can be used to build higher order circuits such as the 

Exclusive-OR and Exclusive-NOR gates, registers, etc. Figure 29 shows the pass gate 

symbol and circuit, while Table 11 details T-SPICE circuit parameters using a three-

inverter output load.  The pass gate is a bi-directional structure, but has been updated in 

the circuit schematic to have uni-directional logic transmission for VHDL definition 

extraction.   

OutIn

Co
n

Co
nN
ot

Vdd

DS

DS

 

PGate OutIn

Co
nN
ot

Co
n

Figure 29.   Pass Gate Symbol (top left) and Schematic (right). 
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Name Value Units 
TR 0.278 ns 

TF 0.106 ns 

TPDLH 0.051 ns 

TPDHL 0.044 ns 

IPEAK −36.41 µΑ 
Voltage 1.8 V 
PPEAK 65.5 µW 

Table 11.   Pass Gate Electrical Characteristics. 

 

3. Buffer 

A buffer is a non-inverting gate formed by combining two inverters in series such 

that it restores output voltage levels to their peak levels.  It does not perform any logic 

transfer function itself, as the output is the equal to the input. The symbol and circuit are 

shown as Figure 30: 

 

 OutIn

In Out

   
Figure 30.   Buffer Symbol (top left) and Schematic (right). 

Tables 12 and 13 detail buffer noise margins and electrical parameters: 

      Noise     
Voltage Value Units Margins Value Units 
VOHMIN 1.798 V 
VIHMIN 0.723 V 

NMH 1.075 V 

VILMAX 0.765 V 
VOLMAX 0.006 V 

NML 0.759 V 

Table 12.   Buffer Noise Margins. 
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Name Value Units 
TR 0.183 ns 
TF 0.084 ns 

TPDLH 0.118 ns 
TPDHL 0.087 ns 
IPEAK −133.17 µΑ 

Voltage 1.8 V 
PPEAK 240 µW 

Table 13.   Buffer Electrical Characteristics. 

 

4. XOR 

The exclusive-OR (XOR) gate has the logical transfer function output of x or y 

but not both, where x and y are gate inputs: 

Input X Input Y Output Z
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 14.   XOR Truth Table. 

 

The XOR gate is built using pass gates, and therefore, has a non-restoring output z 

value.  The symbol and circuit are shown as Figure 31: 
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Z
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Figure 31.   XOR Symbol (top left) and Schematic (right). 
 

Table 15 details the XOR electrical operating characteristics: 
 

Name Value Units 

TR 0.232 ns 

TF 0.081 ns 

TPDLH 0.028 ns 

TPDHL 0.061 ns 

IPEAK −212.4 µΑ 
Voltage 1.8 V 
PPEAK 382.2 µW 

Table 15.   XOR Electrical Characteristics. 

 
5. NAND2 

The two-input NAND gate symbol and circuit are shown as Figure 32:  
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Figure 32.   NAND2 Symbol (top left) and Schematic (right). 
 

The NAND is the complement output of the AND function, and is directly realizable 

(built) in CMOS hardware by using two N-FETs in series and two P-FETs in parallel. 

The NAND2 truth table: 

Input X Input Y Output Z
0 0 1 
0 1 1 
1 0 1 
1 1 0 

Table 16.   NAND2 Truth Table. 

Higher-level input NAND gates are built by consecutively adding N-FETs in series to the 

ground pull-down chain and P-FETs in parallel to the Vdd pull-up.  NAND2 noise 

margins and operating characteristics are shown in Tables 17 and 18: 
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      Noise     
Voltage Value Units Margins Value Units 
VOHMIN 1.70 V 
VIHMIN 1.016 V 

NMH 0.684 V 

VILMAX 0.773 V 
VOLMAX 0.143 V 

NML 0.63 V 

Table 17.   NAND2 Noise Margins. 

 
Name Value Units 

TR 0.062 ns 

TF 0.052 ns 

TPDLH 0.038 ns 

TPDHL 0.087 ns 

IPEAK −225.4 µΑ 
Voltage 1.8 V 
PPEAK 406 µW 

Table 18.   NAND2 Electrical Characteristics. 

 

D. SECONDARY SUB-CIRCUITS 

Previous work by students and a professor laid some of the foundation for S-Edit 

logic circuits.  Those of primary importance and used in this circuit design of the 

amplitude-to-phase converter are registers [12] and the 16-bit Carry Look Ahead Adder 

(CLAH).    

 

1. Registers 

A one-bit register is built using pass gates to form a D-Master/Slave Flip-Flop 

(DMSFF) with corresponding control logic circuitry.  Register loading can be controlled 

using the Load (LD) signal.  When the LD signal is a logic ‘1’, the register loads the D 

input value.  When LD is a logic ‘0’, the Q output of the register is fed back into the D 

input, thereby, holding the last state value.  The rate at which the register samples and 

produces outputs is controlled via the Clock (Clk) signal.  On each rising edge of the Clk, 
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the one-bit input D Master-Slave register samples the input data value and holds it via 

feedback.   Figure 33 shows the circuit design of a one-bit DMSFF register with 

corresponding control signal logic in Figure 34.  Table 19 details the operating 

characteristics. 

Name Value Units 
TR 0.255 ns 

TF 0.158 ns 

TPDLH 0.343 ns 

TPDHL 0.345 ns 

IPEAK -195.08 µΑ 
Voltage 1.8 V 
PPEAK 351.1 µW 

Table 19.   DMSFF1 Characteristics. 

 

Qnot

QD

Clk

~[[~LD][~CLK]]

[~LD][~CLK]

~[LD[~CLK]]

LD[~CLK]

ms

PGate

PGate

PGate

PGate

PGate

 
Figure 33.   Register Schematic (From [12]). 
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Figure 34.   Register Control Logic (From [12]). 

 

~Q ~Q
RCA_DMSFF1

Q Q

LD Ld

D D

ClkCLK

 
Figure 35.   One-bit DMSFF Register Symbol. 

 
 
2. RCA_PSVCHAIN 

As previously stated, the method chosen to implement the phase conversion is the 

bit parallel unrolled CORDIC.  Each level of iteration is a stand alone functional block, 

and is pipeline registered to ensure clock speed operation of 700 MHz.  The Phase Signal 

Valid (PSV) is a control signal that specifies when the output is a valid result.  As detailed 

later on, there are sixteen pipeline registers in the amplitude to phase conversion circuit 

and, therefore, there is pipeline latency of sixteen clock periods from input data until the 

correct output is produced.  On the first clock signal to the circuit, values of Q and I are 

loaded into the first input stage register.  On the next clock signal, the output register of 

that stage produces output values to the next stage register.  Therefore, this “pipeline 

startup” and sixteen clock periods of delay to see the correct output must be accounted 

for.  The amplitude-to-phase conversion circuit, therefore, has a register chain of sixteen 

one-bit registers to follow the Q and I data through the CORDIC iterations and declare 
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when the output is valid.  Table 20 shows the operation of the register and the 

corresponding latency.  The ‘X’ is “don’t care”. 

Inputs       
A Clk LD Register Outputs 
X X 0 No Change – Last Register Output 

A 
 

1 A loaded on rising edge, A seen on 
output after propagation delay 

Table 20.   Register Operation. 

The circuit is show in Figure 36, and is comprised of two eight-bit registers connected in 

series. 

 
Figure 36.   16 Clock Period Delay – Phase Signal Valid Circuit. 

 

3. RCA_13927Buffer 

The global control signals, Clk and LD, control 119 registers and have a large fan 

out of gates (capacitive load to charge).  There are two primary means to distribute these 

signals to all registers while minimizing skew, maintaining the rectangular waveform 
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shape and ensuring fast rise and fall times.  The signals can be buffered through a fan out 

tree or can be buffered by one large driver circuit.  Note that the nine-bit phase values in 

the 9-to-5 Bit Conversion circuit also utilizes this sub-circuit as well.  To minimize the 

number of transistors required and the amount of layout wiring that would be required, 

the large driver circuit option was implemented.  An optimum stage-sizing ratio ‘aopt’ 

was determined iteratively to be the value 3.4 from [11]:  

 
opt

opt

K a
a

opta e
+

=  (3.5) 

and 

 0.776drain

gate

Ck
C

= =  (3.6) 

where: 

• Cdrain is the drain capacitance, and 

• Cgate is the gate capacitance. 

Inverter size scaling should therefore increase (approximate 3.4 to an integer 

value) by a factor of three for optimum gate driving properties.  T-SPICE testing shows 

that a 27x inverter could adequately drive a capacitive load of 100+ inverters within a 

700 MHz clock period.  Figure 37 shows the non-inverting (buffer) driver circuit: 

 
Figure 37.   Buffer Driver Circuit. 

 

4. 16-Bit Pipelined Adder/Subtractor 

Dr. Fouts designed the 16-bit CLAH that is used as the fundamental building 

block in the design of a 16-bit Adder/Subtractor (A/S).  The adder was tested alone and 

found to operate at a maximum clock speed of 780 MHz.  However, with added gate 

delay, because of additional gates on the front end to change the design to an A/S, timing 

problems were found in the circuit operating at 700 MHz.  As such, it could not be 
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guaranteed to produce proper timing results and a pipeline register stage was inserted to 

meet the required clock period.  The A/S works on the principle of always doing addition, 

but via the two’s complement, adds the negative of the B input number to execute 

subtraction: 

• Addition: A + B = Sum  

• Subtraction: A + (−B) = Difference.   

The circuit is show in Figure 38.  XOR gates are used to form the one’s complement of 

the B input.  Subtraction is enabled via a control line M when M = ‘1’.  Table 21 shows 

the operation of the one’s complement.  In rows two and four, whenever the M bit is a 

one, the output Z is the complement of the input X.  In rows one and three, the output Z 

follows the input when M = ‘0’.  Thus, the control signal M controls the one’s 

complement on the B input, and by adding a one to the CLAH via the Carry In signal, Ci, 

by also routing the M signal there, the two’s complement is formed, and subtraction 

occurs. 

Input X Input M Output Z

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 21.   XOR Truth Table. 
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Figure 38.   16-bit Pipelined Adder/Subtractor. 
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E. NUMBER FORMATS 

The eight-bit two’s complement Z (accumulated phase value), Q and I numbers 

are physically converted to a 16-bit two’s complement fixed-radix positional number 

system when passed as inputs to the RCA CORDIC Level 45.  The 16-bit number is of 

the form of a 9+7 fixed-point decimal number, which has a two’s complement integer 

radix (base) of nine bits and an implicit digit set of seven bits (see Table 22).  It is of 

sufficient precision to account for increasing I and decreasing Q values during CORDIC 

iterations.  The I values as discussed previously, however, can require more that nine 

integer bits after the initial Rotation stage.   

MSB               
Decimal 

Point           LSB 
15 14 13 12 11 10 9 8 7 . 6 5 4 3 2 1 0 

 
Bit Position 

Number: 
9-bit Integer   7-bit Decimal 

Table 22.   CORDIC Iteration Number Format. 

The different phase values of R expressed in degrees are listed in Table 23 using 

this number format.  The table also presents the negligible error by representing the 

constant R phase values using this number format of only 16-bits.   

During Q and I shifts shown previously in Table 4, the numbers should be, in 

general, hardwired-shifted sign extended by replicating the MSB.  Indeed, this is the 

means by which the Q values are shifted.  However, because I is always a positive 

number after Rotation, the fictional 10th integer bit of I (and higher) is always a logical 

zero.  Thus, some MSB I shifts are grounded as appropriate.   
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Table 23.   16-Bit Number Format. 



F. CORDIC ROTATION LEVEL 

1. Overview 

The CORDIC rotation level performs the initial Rotation step by adding a 

constant phase value of ±90°.  It takes as inputs, two eight-bit Q and I values on each 

rising edge clock pulse and performs the rotation by negating one of the values and 

swapping, dependant upon the sign of Q in accordance with Table 3.  A stand-alone 

functional block, it possesses input and output stage pipeline registers.  The internal state 

machine control is the Q7 signal, the most significant sign bit of the Q data.  When Q7 = 

‘1’, the number is negative, and +90° is added to the Z phase output register.  This is 

accomplished by directly using the value of Q7 to program the register with either +90° 

or −90° in binary.  Table 24 shows both phase constant numbers and the corresponding 

Q7 logic value, the appropriate binary value to load into each bit position displayed as Z 

logic.  For example, Z0, the least significant bit loaded into the D0 of the register, is 

always zero, and thus, is a grounded input.  Z1 is always one and is, therefore, always 

pulled high to Vdd.  The remaining Z<7..2> bits are buffered and inverted, as applicable, 

Q7 values. 

 
Table 24.    Q7 Programming of ±90°. 

The negation of one input number is accomplished by an algorithmic two’s 

complement implementation.  Swapping is a “logical switch” of the output data.  Q input 

data becomes the I output data and vice versa.   Finally, the circuit has a correction block 

to catch an input value of –128, which cannot be two’s complemented to +128 because 

this positive number cannot be represented with only eight bits. 

 

2. Rotation Circuit Diagram 

The complete circuit is shown as Figure 39, with alphabet numbered sub-circuits 

detailed in Sections 3 through 5. 
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Figure 39.   Rotation Level Symbol (left) and Circuit (Right). 
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3. Constant Phase Loading 

Figure 40 shows the zoomed location ‘A’ of Figure 39.  The two vertical paths 

present a two-inverter (buffered and non-inverting) and three-inverter (buffered and 

complementing) chains, respectively, to provide the Q7 and ~Q7 signals to the output 

pipeline register as explained in the overview section above.  The one-bit DMSFF 

ensures Q7 control signal data synchronization with the flow of data through the Q Out 

and I Out circuit sections. 

Z Out

Z1
3 Z8Z1
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Z1
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Z1
1

Z1
0 Z9Z1
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Vdd

8-Bit MS D Register Flip Flop
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Figure 40.   ±90° Phase Loading. 
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4. Negative 128 Fix Circuit 

Shown as block ‘B’ in Figure 39, this sub-circuit detects when an input number is 

–128, or 1000 0000 in binary, via the NOR and AND gates, and changes it to –127 prior 

to the two’s complement circuit.  If the output of the AND gate is true, the XOR flips the 

least significant bit, thereby, changing the number to –127, or 1000 0001 in binary, and 

thus, allowing the number to be negated to become +127, a value which is represented as 

an eight-bit number.  Increasing the number by the “addition” of one to produce –127 has 

no effect on the phase results produced by the CORDIC algorithm.  An alternative 

method to correct this –128 overflow error, is to increase the Q and I data to nine-bits in 

this stage, which would result in an increase to nine-bit output registers and additional 

logic in the two’s complement circuit, vice a four gates solution shown below as Figure 

41. 

 
Figure 41.   Negative 128 Circuit Fix. 

 
5. Two’s Complement Circuit 

 Shown as block ‘C’ in Figure 39, this circuit negates an input number.  The 

negation of the number is not implemented via the two’s complement using eight-bit 

addition, as in: 

Number:  0011 0011 =  51 

Ones Complement: 1100 1100 = −52 

Add One:   + 1 

   Two’s Complement: 1100 1101 = −51 

Rather, to save on transistor count, the circuit uses an algorithmic approach, described by 

the following pseudo-code: 
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BEGIN 

Set Flag = 0; 

FOR bits 0 to n: 

IF (Flag = = 1) 

THEN Flip bit; 

ELSEIF (bit = = 1) 

THEN Set Flag = 1; 

  END FOR Loop 

END 

This algorithm is implemented using only 21 logic gates, which is much smaller than the 

number of gates required for an eight-bit adder circuit.  The hardware implementation 

uses XOR gates to execute bit flips, controlled by the ripple Flag that can be thought of as 

an enable signal.  The ripple of the Flag signal has considerable delay from the least 

significant bit (LSB) until it arrives at the most significant bit (MSB), and therefore, has 

the inclusion of a “carry-look ahead” block.  This block, seen as the center top three gates 

and highlighted in yellow in Figure 42, quickly propagates the Flag signal to the MSB, 

thereby reducing combinatorial logic delay and achieving high clock speed operation. 

 

 
Figure 42.   Two’s Complement Circuit. 

 

G. CORDIC GENERAL VECTOR LEVEL 

1. Overview 

The CORDIC General Vector Level is one stage of the bit-parallel unrolled 

CORDIC hardware that is replicated in the circuit the requisite number of times 

necessary for the iteration accuracy desired.   It allows ease of circuit building in both S-
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Edit and layout, because it needs to be designed only once and can then be used many 

times. 

 
2. Schematic 

Figure 43 shows the CORDIC General Vector Level circuit.  It differs from one 

stage of Figure 18 in the addition of output pipeline registers.  There are three 16-bit 

A/S’s: two to execute Table 4 mathematics on Q and I, and one to accumulate the phase 

Z.  The MSB (sign) bit of the input Q data and its complement are routed as the ‘M’ 

control signal to the A/S’s.  Constant phase values from Table 24 for the given iteration 

are hardwired at location ‘A’.  Whenever Q is positive, subtraction occurs and conversely 

addition when Q is a negative number.   I data is added to shifted values of Q at ‘B’, and 

Q data is added to shifted values of I at ‘C’.  Multiple levels of the CORDIC General 

Vector Level are cascaded vertically to implement multiple Vectoring iterations. 
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Figure 43.   CORDIC General Vector Level Schematic. 

63 



3. Example: CORDIC Vector Level 14.03 

A programmed CORDIC Vector level implementing L=2 is shown as Figure 44:   

 
Figure 44.   CORDIC Level 14.03 Symbol (left) and Circuit (right). 
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The phase value of R in degrees for this stage is 14.03624° and the number of 

hardwire shifts is two, corresponding to a K value of 2L = 22 = 4.    In accordance with 

Table 24, the phase value R programmed is 14.03125°.  This is represented as: 

• Logic Value:   LLLL LHHH L . LLL LHLL 

• In Binary:    0000     0111  0 .  000  0100  

where ‘L’ stands for “low” and is a logic ‘0’ (zero volts), and ‘H’ stands for “high” and is 

a logic ‘1’ (1.8 volts).  The location ‘A’ from Figure 44 is zoomed and shown as Figure 

45 and details this constant phase value programming.  The reader can verify the pull-ups 

and pull-downs to Vdd and Ground. 

 
Figure 45.   Zoomed In Phase Input – Phase Loading of 14.03125°. 

 

Data is shifted right in order to divide by powers of two.   As Q data may be a 

positive or negative value, and the shift must be an arithmetic right shift with sign 

extension.  As there are two shifts for this iteration stage, the values of Q1 and Q0 are 

dropped and the MSB Q15 is replicated twice to implement sign extension.  Figure 46 is 

a zoomed picture of Figure 44 location ‘B’.  The Q15 line from the previous iteration 
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level is buffered prior to the input of the 16-bit A/S because this is also the ‘M’ control 

line for the other A/S’s, and hence, has a large fan out (capacitive loading).   

 

 
Figure 46.   Zoomed in Q Hardwire Shifts. 

 
Figure 47 is a zoomed view of location ‘C’ from Figure 44 showing the hardwire-

shifted I data.  Again, there are two shifts for this iteration stage.  Hence, the values of I1 

and I0 are dropped and ground is shifted in because higher order I data is always positive.  

The MSB shifted in after integer bit nine is always a logical zero.   
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Figure 47.   Zoomed in I Hardwire Shifts. 

 
 

H. 9-BIT TO 5-BIT NUMBER CONVERSION 

1. Overview 

The accumulated phase data, which is a 16-bit two’s complement fixed radix 

positional number system, requires conversion to a five-bit unsigned integer for use in the 

DIS.  The phase resolution is 11.25°, a fractional number and, therefore, the possible 

phase value ranges of a 360° circle were rounded and arranged in bins.  Table 25 shows 

the 32-phase bin organization: 

 

 

 

 

67 



Degree 
Range 

5-Bit 
Phase 
Value 

Decimal 

Degree 
Range 

5-Bit 
Phase 
Value 

Decimal

Degree 
Range 

5-Bit 
Phase 
Value 

Decimal

Degree 
Range 

5-Bit 
Phase 
Value 

Decimal
0-11 0 91-101 8 181-191 16 271-281 24 
12-23 1 102-112 9 192-203 17 282-93 25 
24-34 2 113-124 10 204-214 18 294-304 26 
35-45 3 125-135 11 215-225 19 305-315 27 
46-56 4 136-146 12 226-236 20 316-326 28 
57-67 5 147-158 13 237-248 21 327-338 29 
68-78 6 159-169 14 249-259 22 339-349 30 
79-90 7 170-180 15 260-270 23 350-359 31 

Table 25.   Phase Groupings. 

Using the nine integer Z phase bits produced by the last CORDIC iteration stage, a 9 to 5 

Bit Phase Conversion truth table was generated and is detailed in Appendix C.   The table 

was then examined to determine the SOP minterms where each of the output five bits, F4 

through F0, were a logic value of ‘1’.   Table 26 shows this collection of minterms 

necessary to generate each F-bit result. 

F4 F3 F2 F1 F0 
1-10 411-421 456-466 478-488 489-500
11-21 400-410 445-455 467-477 467-477
22-33 388-399 434-444 434-444 445-455
34-44 377-387 422-432 422-432 422-433
45-55 366-376 366-376 388-399 400-410
56-66 354-365 354-365 377-387 377-387
67-78 343-353 343-353 343-353 354-365
79-89 332-342 332-342 332-342 332-342
90-100 1-10 1-10 1-10 1-10 
101-111 11-21 11-21 11-21 22-33 
112-123 22-33 22-33 45-55 45-55 
124-134 34-44 34-44 56-66 67-78 
135-145 45-55 90-100 90-100 90-100 
146-156 56-66 101-111 101-111 112-123
157-168 67-78 112-123 135-145 135-145
169-179 79-89 124-134 146-156 157-168

Table 26.   Minterms Necessary to Generate the 9-to-5 Conversion Circuit. 
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 Using the collection of minterms shown above, a MATLAB coded Quine-

McClusky algorithm was used to determine the five SOP logical functions.  The resulting 

logic terms to implement the SOP functions are shown in Table 27 as R4 through R0.  

Function R0 required the logical OR’ing of 53 different AND products and is a very large 

array, whereas R4 is very easy to generate, requiring only 11 product terms. 
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Table 27.   Quine-McClusky Results of 9-to-5 Bit Logic Minimization. 
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Using only the nine integer bits from the last CORDIC Vector level produces a 

truncation error.  Consider a 16-bit Z phase data produced at the last iteration of the 

CORDIC of 1 0110 0111.0010 000.  Truncating this number by only using the most 

significant nine bits, yields 1 0110 0111.  This new number in two’s complement is: 

Number:  1 0110 0111 = ? 

Ones Complement: 0 1001 1000 = 152 

Add One to the LSB:    + 1 

Two’s Complement: 0 1001 1001 = 153 

Compare the non-truncated number using all 16-bits of precision: 

Number:  1 0110 0111 . 0010 000    = ? 

Ones Complement: 0 1001 1000 . 1101 111    = 152.8671875 

Add One to the LSB:                       + 1 

Two’s Complement: 0 1001 1000 . 1110 000   = 152.875 

Thus, the hardware is actually passing the number −153 into the 9 to 5 Conversion, when 

it should be 0 1001 1000 = −152.  This is because the decimal bits are ignored in order to 

use the minimum number of terms in the Quine-McClusky algorithm (nine vs. sixteen 

bits).  Ignoring the decimal bits, in essence, rounds towards the next more negative 

number.  To correct this truncation error, the hardware adds one to the Z data if the 

number is negative and has any decimal bit.  Thus, −153 + 1 = −152, is the correct data to 

use.  If the number does not have any fractional bits, then, no truncation error occurs and 

no extra addition of one is necessary: 

Number:  1 0110 0111 . 0000 00 = ? 

Ones Complement: 0 1001 1000 . 1111 11 = 152 

Add One to the LSB:                     + 1 

Two’s Complement 0 1001 1001 . 0000 00 = 153 

i.e., the hardware should in this case produce −153. 
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2. Schematics 

 The completed 9-to-5 Bit Conversion circuit is shown in Figure 48 and as a 

sample hardware implementation, the logic function implementation of R0 from Table 27 

is shown in Figure 49. 
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Figure 48.   RCA_9to5_Conversion Circuit. 
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The top portion of the Figure 49 schematic detects a negative number with at least 

one fractional bit being a logic ‘1’ and correspondingly adds one.  The output of the nine-

bit adder must drive 138 logic gates to implement the five logic functions of the phase 

conversion.  Thus, the adder outputs after a pipeline register are buffered through 

RCA_13927Buffer circuits.  Finally, the five conversion bits are pipelined before their 

processing in the DIS. 
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Figure 49.   R0 Function Hardware Implementation. 
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I. COMPLETED CIRCUIT 

1. Completed Circuit 

Figure 50 shows the completed circuit, which takes as inputs: eight-bit Q and I 

data, a Load signal, a Clock signal, and Phase Signal Valid In.  It produces a five-bit 

phase result, Z, and a Phase Signal Valid Out. 
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Figure 50.   Completed Circuit. 
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2. Circuit Verification and Parameters 

Table 28 details T-SPICE determined electrical circuit parameters: 

Symbol Parameter Value Units 

Vdd Power Supply Voltage 1.8 V 

τ Clock Period 1.4285714 ns 

f Clock frequency 700 MHz 

PAve Average Power 0.0567 W 

PInst Maximum Instantaneous Power 0.3141 W 

LP Minimum Sized PFET Length 180 nm 

WP Minimum Sized PFET Width 450 nm 

LN Minimum Sized NFET Length 180 nm 

WN Minimum Sized NFET Width 450 nm 

βN N-FET Transistor Gain Factor 435.0 µΑ/ V2 

βp  P_FET Transistor Gain Factor 146.5 µΑ/ V2 

s Clock Skew 0.41 ns 

βN  /βp  N-to-P Gain Factor Ratio 2.969  

M_CMOSP P-Fet count 24236  

M_CMOSN N-Fet count 24236  

Nodes Total Nodes 20442  

M_Elm Number of elements 48472  

Table 28.   Circuit Parameters. 

Figure 51 shows the current draw on the power supply for a string of different test 

vectors.  The average and peak current were used in the calculation of the above power 

parameters.  The Clock and Load signal before and after the RCA_13927Buffer shows 

sample skew measurement, s, in Figure 52. 
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Figure 51.   Power Supply Current Draw. 
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3. Verification 

Verification of the circuit was done with two different methods: 

• Functional (logical) Testing and 

• Timing Testing of selected test vectors. 

The functional testing was done by extracting the complete S-Edit circuit as a 

VHDL file.  The Aldec VHDL program was used to test all 65,536 possible input 

combinations of Q and I.  A 0.5 ns clock was used in the Aldec test to speed up 

simulation completion time as only logical testing was important using this software.  

Figure 53 shows the previous example use of Q = 4, I = −8.  The circuit produces the 

correct output value of 13, 16-clock pulses later. 

T-SPICE was used for all important circuit electrical and timing parameters, but 

only for small sets of test vectors, because of the excessively long simulation run times.  

Figure 54 shows T-SPICE timing simulation using the same Q and I inputs and the 

corresponding correct output results, plotted with annotations using the W-Edit program.    

The Valid Signal Out goes high 16 clock periods after both inputs change from zero, 

indicating that the output phase number (in this case 13) is valid, and is correct.  T-SPICE 

timing simulations show that the circuit runs properly at a 700 MHz clock frequency, 

producing results after a latency of 16-pipeline clock periods. 
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Figure 53.   VHDL Functional Verification. 
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Figure 54.   T-SPICE Timing Verification. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. GENERAL 

This thesis demonstrated the hierarchical research, design, VLSI circuit 

implementation, and testing of a high performance ASIC that extracts the phase of a 

complex signal.  The circuit meets all the design goals: 

• A minimum transistor count implementation of only 48,472 FETs, 

• Ability to operate at 700 MHz clock speed, 

• Low average power use of 56.7mW, and 

• Accurate production of a five-bit phase value for use in the DIS by 

implementing the arctangent function using only six CORDIC vector 

iterations. 

The amplitude-to-phase converter is a robust design that produces a five-bit phase result 

of eight-bit input Q and I data on each rising clock edge after a 16-clock pulse latency 

delay.  Once the pipeline is loaded, phase results are produced on each clock edge.  The 

circuit can easily and quickly be scaled for more CORDIC accuracy by the inclusion of 

additional General Vector Levels and updating the Z constant phase value loaded and the 

hardwire shift programming.  

Although primarily designed for ASIC implementation, the circuit can also be 

readily implemented as a Field Programmable Gate Array (FPGA).   

 
B. LESSONS LEARNED 

 A complicated circuit should be first designed and tested using a high-level 

software package such as VHDL prior to the S-Edit design.  VHDL allows very fast 

functional testing of all possible circuit inputs and, therefore, facilitates circuit 

debugging.  Test vectors cannot be used to guarantee proper circuit operation under all 

logical conditions.  T-SPICE simulations, though, are an absolute necessity for timing 

and electrical validation.  Simple modular piece-wise designs lead to error-free circuit 

operation and ease of future upgrading.   
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C. RECOMMENDATIONS FOR FUTURE WORK 

 Recommendations for future circuit optimization and work include: 

• Removing the negative 128 circuit fix in the RCA_CORDIC_ROTATION 

level by increasing the size of the two’s complement circuit by one-bit 

• Investigating the addition and subtraction of a constant Z phase of only five-

bit numbers.  Rather than carrying a 16-bit two’s complement fixed-point 

radix number to accumulate phase values, preliminary work suggests that a 

five-bit phase value may be sufficient.  This would allow the reduction of the 

16-bit A/S at each vector stage to be decreased to a five-bit A/S, and the 

complete elimination of the 9 to 5 Bit Conversion sub-circuit 

• Layout of the working circuit must be finished in L-Edit to facilitate circuit 

fabrication. 
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APPENDIX A. MATLAB CODE 

A. OVERVIEW 

This appendix details the author’s MATLAB code.  The Quine-McClusky code 

used for the minimization in B. 1. below is detailed in reference [13]. 

 

B. QUINE-MCCLUSKY MINIMIZATION 

1. File – Main.m 

This program calls the Quine-McClusky minimization routine to compute the 

minimal Sum-of-Products logic function for each of the five conversion output phase 

bits.  The range of minterms from Appendix X are listed as “x#” correspond to the 

appropriate phases of each bin.  The minterms which are never produced are “don’t care” 

terms and are listed as “dc”.  Next, the appropriate five functions, f0 through f4, are listed 

as a matrix with their appropriate range of bin minterms.  The routine is run five times, 

once for each function bit. 

%--------------------------------------------------------------------------------------------------- 

%create matrix of minterms 
 
x0=[0 511 510 509 508 507 506 505 504 503 502 501]; 
x1=489:500; x2=478:488;  x3=467:477;  x4=456:466;  x5=445:455;  x6=434:444;  
x7=422:433;  x8=411:421;  x9=400:410;  x10=388:399;  x11=377:387;  x12=366:376;  
x13=354:365;  x14=343:353;  x15=332:342;  x16=321:331; x17=309:320; x18=298:308; 
x19=287:297; x20=276:286; x21=264:275; x22=253:263; x23=242:252; x24=231:241;   
x25=219:230;  x26=208:218;  x27=197:207; x28=186:196;  x29=174:185;  x30=163:173;   
x31=153:162;   
 
%create don't care matrix, values of minterms that will never get 
dc=1:152; 
 
f0=[x1  x3  x5  x7  x9  x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x31 dc]; 
f1=[x31 x30 x27 x26 x23 x22 x19 x18 x15 x14 x11 x10 x7  x6  x3  x2  dc];  
f2=[x31 x30 x29 x28 x23 x22 x21 x20 x15 x14 x13 x12 x7  x6  x5  x4  dc]; 
f3=[x31 x30 x29 x28 x27 x26 x25 x24 x15 x14 x13 x12 x11 x10 x9  x8  dc]; 
f4=[x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 dc]; 
 
m0=sort(f4); 
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%call quine-mcclusky minimization 
r0=quine(m0,5) 
 
C. OTHER CODES 

1. File – NoiseMargins.m 

The following program calculates the slope of the voltage curve, and locates the 

two places where the derivate is minus one.  The location of these two points contains the 

voltage data value at that index of the MATLAB data, and is used in the noise margin 

calculations. 

load INVERTER.M; 
Vin=INVERTER(:,1); 
Vout=INVERTER(:,2); 
Vin=Vin'; 
Vout=Vout'; 
Y=diff(Vout); 
X=diff(Vout); 
Z=Y./X; 
Z=Z'; 
 

2. File – Arctangent.m 

The following program is used to generate the tan-1(Q/I) by either the MATLAB 

predefined “atan2” function, or by the CORDIC method.  The user may specify either 

method by setting the perfect variable, and if the CORDIC method is used, the number of 

iterations to perform. 

 
function z=arctangent(I,Q,iterations,perfect) 
 
% returns the phase either using cordic or angle(z) depending on perfect flag 
% perfect = 0 use cordic approximation 
% perfect = ~0 use built in MATLAB atan2 function 
% iterations - affects accuracy of the cordic algorithm, max 8! 
% sample result and use: 
% >> arctangent(1,1,8,0) 
% 
%ans = 
% 
%     4 
 
IP = I;     %temp variables used for angle calculation of ArcTan below 
QP = Q; 
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mp_cordic_table=[1,.5,.25,.125,.0625,.03125,.015625,.007813,3.90625e-3,1.953125e-3]; 
mp_cordic_table_phase=[.7853981634,.4636030826,.2449597967,.1243547092,.062381
8854,.0312250311,.0156125156,.0077721693,.0038860847]; 
 
if perfect == 0 
%rotate by an initial +/- 90 degrees   
if (I < 0) 
     tmp_I = I; 
     if (Q > 0)  
        I = Q;                       % subtract 90 degrees  
        Q = -tmp_I; 
        acc_phase_rads = -pi/2; 
     else  
        I = -Q;                       % add 90 degrees  
        Q = tmp_I; 
       acc_phase_rads = pi/2; 
    end  
 else  
    acc_phase_rads = 0.0; 
end    
 
%  rotate using "1 + jK" factors  
for (L = 0:iterations)            
K = mp_cordic_table(L+1); 
  phase_rads = mp_cordic_table_phase(L+1);  
  tmp_I = I; 
  if (Q >= 0.0)                         % phase is positive: do negative roation  
    I = I + Q * K; 
    Q = Q - tmp_I * K; 
    acc_phase_rads = acc_phase_rads - phase_rads; 
  else                                  % phase is negative: do positive rotation   
    Q = Q + tmp_I * K; 
    acc_phase_rads = acc_phase_rads + phase_rads; 
  end 
  L=L+1; 
end 
 
p_phase_degs = -1*acc_phase_rads*180/pi;         %angle is the negative, convert to 
degree 
phase_quantized = round((p_phase_degs)/11.25);       %quantize to 5 bits 
if phase_quantized <0                             %if negative angle, make offset binary 
  phase_quantized = phase_quantized + 32; 
end 
 
else 
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%******************** "Perfect" Calculation ************************* 
z=IP+i*QP; 
phase_quantized = (round(atan2(Q,I)*180/(pi*11.25)));  
if phase_quantized <0                            %if negative angle, make offset binary 
  phase_quantized = phase_quantized + 32; 
end 
end 
z=phase_quantized; 
end 

 
3. File – Polynomial_Approx.m 

The following program was used to plot Figure 8, and via the MATLAB “polyfit” 

function, determines a polynomial fit to the arctangent function. 

clear; clc; 
 
I=[-15:-1 0:15]; 
Q=[-15:-1 0:15]; 
h=[]; 
 
for i = 1:31 
    for j=1:31 
        if Q(i) == 0 
            h(i,j) = inf; 
        end 
 
        if (Q(i) == 0)&(I(j)==0) 
            h(i,j) = 0; 
        end 
         
        if Q(i) ~= 0 
        h(i,j)=I(j)/Q(i); 
        end 
    end 
end 
%  
% figure(1) 
% y=floor(atan(h)*180/pi); 
 
% figure(2) 
x=-70:70; 
a=(atan(x)*180/pi); 
plot(x,a) 
grid on 
axis ([-15,15,-90,90]) 
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x=(-70:1:70)'; 
y=atan(x)*180/pi; 
z=polyfit(x,y,15) 
f=polyval(z,x); 
plot(x,y,'red',x,f,'blue') 
axis ([-80,80,-110,110]) 
legend('atan(x)','15th Degree Polynomial') 
title('Polynomial atan Approximation') 
ylabel('Degrees'),xlabel('x'),grid on 
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APPENDIX B. MOSIS TSMC 0.18 MICRON FET PARAMETERS 
[14] 

A. PROCESS PARAMETERS FILE – TSMC018EPI.MD 
* MOSIS PARAMETRIC TEST RESULTS 
* RUN: T15J (LO_EPI)                                 VENDOR: TSMC 
* TECHNOLOGY: SCN018                                FEATURE SIZE: 0.18 
microns 
* T15J SPICE BSIM3 VERSION 3.1 PARAMETERS 
* SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 
* DATE: Jul 16/01 
* LOT: T15J                  WAF: 5001 
* Temperature_parameters=Default 
 
.MODEL CMOSN NMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 4.2E-9 
+XJ      = 1E-7           NCH     = 2.3549E17      VTH0    = 0.3593426 
+K1      = 0.584235       K2      = 1.808939E-3    K3      = 1E-3 
+K3B     = 15.9142604     W0      = 6.767602E-6    NLX     = 1.645593E-7 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 1.3712712      DVT1    = 0.4653446      DVT2    = -0.0430942 
+U0      = 319.668247     UA      = -2.46952E-10   UB      = 6.893182E-
19 
+UC      = -4.23662E-11   VS.AT    = 9.798045E4     A0      = 1.4231374 
+AGS     = 0.1896218      B0      = -1.429899E-8   B1      = -1E-7 
+KETA    = 0.0270338      A1      = 5.615435E-4    A2      = 0.8500947 
+RDSW    = 133.2722527    PRWG    = 0.5            PRWB    = -0.2 
+WR      = 1              WINT    = 0              LINT    = 9.682918E-9 
+XL      = -2E-8          XW      = -1E-8          DWG     = -7.78854E-9 
+DWB     = -1.003184E-8   VOFF    = -0.0652789     NFACTOR = 2.5 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 0.1006785      ETAB    = -0.0446167 
+DSUB    = 0.8210518      PCLM    = 0.7765536      PDIBLC1 = 0.1854406 
+PDIBLC2 = 9.865273E-3    PDIBLCB = -0.0540508     DROUT   = 0.8266372 
+PSCBE1  = 7.672864E10    PSCBE2  = 2.036021E-8    PVAG    = 0 
+DELTA   = 0.01           RSH     = 6.8            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 7.23E-10       CGSO    = 7.23E-10       CGBO    = 1E-12 
+CJ      = 9.89627E-4     PB      = 0.73534        MJ      = 0.3594267 
+CJSW    = 2.46165E-10    PBSW    = 0.7840557      MJSW    = 0.1075765 
+CJSWG   = 3.3E-10        PBSWG   = 0.7840557      MJSWG   = 0.1075765 
+CF      = 0              PVTH0   = -3.498648E-5   PRDSW   = -2.9489679 
+PK2     = -1.251474E-3   WKETA   = 1.928603E-3    LKETA   = -8.378587E-
3 
+PU0     = 31.1137209     PUA     = 1.155019E-10   PUB     = 0 
+PVS.AT   = 1.542088E3     PETA0   = -1.003159E-4   PKETA   = 5.130701E-
3     ) 
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.MODEL CMOSP PMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 4.2E-9 
+XJ      = 1E-7           NCH     = 4.1589E17      VTH0    = -0.4139661 
+K1      = 0.5684869      K2      = 0.0351909      K3      = 0 
+K3B     = 10.6033883     W0      = 1E-6           NLX     = 9.038631E-8 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 0.5244177      DVT1    = 0.2901433      DVT2    = 0.1 
+U0      = 124.8628741    UA      = 1.792035E-9    UB      = 1E-21 
+UC      = -1E-10         VS.AT    = 1.551654E5     A0      = 1.5201757 
+AGS     = 0.3427925      B0      = 1.666904E-6    B1      = 5E-6 
+KETA    = 0.0212022      A1      = 0.028014       A2      = 1 
+RDSW    = 304.979313     PRWG    = 0.5            PRWB    = -0.5 
+WR      = 1              WINT    = 0              LINT    = 2.053267E-8 
+XL      = -2E-8          XW      = -1E-8          DWG     = -3.938518E-
8 
+DWB     = 5.971841E-9    VOFF    = -0.100662      NFACTOR = 1.9470845 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 0.2098261      ETAB    = -0.2406335 
+DSUB    = 1.2865683      PCLM    = 2.544679       PDIBLC1 = 6.316635E-3 
+PDIBLC2 = 0.0508323      PDIBLCB = -9.99311E-4    DROUT   = 0 
+PSCBE1  = 1.733444E9     PSCBE2  = 5.00159E-10    PVAG    = 15 
+DELTA   = 0.01           RSH     = 7.6            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 6.92E-10       CGSO    = 6.92E-10       CGBO    = 1E-12 
+CJ      = 1.204978E-3    PB      = 0.8428469      MJ      = 0.4043249 
+CJSW    = 2.088728E-10   PBSW    = 0.5832884      MJSW    = 0.3016152 
+CJSWG   = 4.22E-10       PBSWG   = 0.5832884      MJSWG   = 0.3016152 
+CF      = 0              PVTH0   = 2.844904E-3    PRDSW   = 6.5073202 
+PK2     = 2.629498E-3    WKETA   = 2.438155E-3    LKETA   = -4.928775E-
3 
+PU0     = -2.2589171     PUA     = -7.99545E-11   PUB     = 2.472552E-
22 
+PVS.AT   = -50            PETA0   = 1E-4           PKETA   = 2.018007E-
3     ) 
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APPENDIX C. 9-TO-5 BIT CONVERSION – MINTERM 
CALCULATION 

A. OVERVIEW 

Using Excel, all Z phases were listed in Table 29, along with their corresponding 

negative value, the Actual Phase, as a reference (recall the CORDIC give the negative of 

the actual phase).  The Z Decimal was then converted to binary which represents its 

minterm.  For example: 

−4° = 1 1111 1100 in two’s complement = 508 as an unsigned binary number. 

The data Z8 through Z0 show this minterm representation in binary.  Phases, and 

thus minterms, were then grouped IAW Table 26. and the five bit corresponding number, 

F4 through F0 was entered according to the Actual Phase value.  For the case of the Z 

Decimal value of –4°, actual phase of 4° this would correspond to a five-bit phase 

number of 0 as it falls in the range of 0° to 11°.  Thus, the table automatically converts 

the Z Decimal phase to its complement number via the method it is laid out and encoded.  

By comparing when a particular F bit was one, the sum of products minterms were then 

determined and entered into Table 27.  As well, the “don’t care” terms were determined 

by examining which minterms were never used because they represent a phase value 

larger than 360 degrees, which by definition, is impossible.  The “don’t cares” were thus 

determined to be the minterm values between 1 and 152.   
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Table 29.   9-to-5 Bit Phase Conversion Truth Table. 
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APPENDIX D. PROCESS TECHNOLOGY 

A. OVERVIEW 

The following is a reproduction from the MOSIS website and provides a general 

description of the fabrication processes and rules [15]. 

 

B. MOSIS PROCESSES 
 

1. Overview 

This CMOS process has 6 metal layers and 1 poly layer. The process is for 
1.8 volt applications. A thick oxide layer can be used for 3.3 volt transistors. 
MOSIS multiproject runs support designs for the 0.18 micron CMOS logic 
process (CL018) using epitaxial wafers, and mixed signal/RF process (CM018) 
using non-epitaxial wafers.   
 

Silicide block, thick gate oxide (3.3 V), ESD 3.3 V, NT_N, deep n_well, 
ThickTopMetal (inductor), and MiM options are available on multiproject runs. 
The Thick_Top_Metal option must be explicitly specified with each design 
submission that requires it. MiM (Cap_Top_Metal, also known as Metal 5 Prime, 
to Metal 5) provides a capacitance of 1 fF/µm². Designs for this process require 
Metal 6 in the pad stack. 

 
MOSIS Scalable CMOS (SCMOS) is a set of logical layers together with 

their design rules, which provide a nearly process- and metric-independent 
interface to all CMOS fabrication processes available through MOSIS. The 
designer works in the abstract SCMOS layers and metric unit ("lambda"). He then 
specifies which process and feature size he wants the design to be fabricated in. 
MOSIS maps the SCMOS design onto that process, generating the true logical 
layers and absolute dimensions required by the process vendor. The designer can 
often submit exactly the same design, but to a different fabrication process or 
feature size. MOSIS alone handles the new mapping.   
 

By contrast, using a specific vendor's layers and design rules ("vendor 
rules") will yield a design which is less likely to be directly portable to any other 
process or feature size. Vendor rules usually need more logical layers than the 
SCMOS rules, even though both fabricate onto exactly the same process. More 
layers means more design rules, a higher learning curve for that one process, more 
interactions to worry about, more complex design support required, and longer 
layout development times. Porting the design to a new process will be 
burdensome.  
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SCMOS designers access process-specific features by using MOSIS-
provided abstract layers which implement those features. For example, a designer 
wishing to use second-poly would use the MOSIS-provided second-poly abstract 
layer, but must then submit to a process providing for two polysilicon layers. In 
the same way, designers may access multiple metals, or different types of analog 
structures such as capacitors and resistors, without having to learn any new set of 
design rules for the more standard layers such as metal-1.   
 

Vendor rules may be more appropriate when seeking maximal use of 
silicon area, more direct control over analog circuit parameters, or for very large 
production runs, where the added investment in development time and loss of 
design portability is clearly justified. However the advantages of using SCMOS 
rules may far outweigh such concerns, and should be considered.  

 

2. SCMOS Design Rules  

In the SCMOS rules, circuit geometries are specified in the Mead and 
Conway's lambda based methodology. The unit of measurement, lambda, can 
easily be scaled to different fabrication processes as semiconductor technology 
advances.  
 

Each design has a technology-code associated with the layout file. Each 
technology-code may have one or more associated options added for the purpose 
of specifying either (a) special features for the target process or (b) the presence 
of novel devices in the design. At the time of this revision, MOSIS is offering 
CMOS processes with feature sizes from 1.5 micron to 0.18 micron.  

3. Standard SCMOS 

The standard CMOS technology accessed by MOSIS is a single 
polysilicon, double metal, bulk CMOS process with enhancement-mode n-
MOSFET and p-MOSFET devices.  

 

4. Well Type 

The Scalable CMOS (SC) rules support both n-well and p-well processes. 
MOSIS recognizes three base technology codes that let the designer specify the 
well type of the process selected. SCN specifies an n-well process, SCP specifies 
a p-well process, and SCE indicates that the designer is willing to utilize a process 
of either n-well or p-well.  

 
An SCE design must provide both a drawn n-well and a drawn p-well; 

MOSIS will use the well that corresponds to the selected process and ignore the 
other well. As a convenience, SCN and SCP designs may also include the other 
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well (p-well in an SCN design or n-well in an SCP design), but it will always be 
ignored.  

 

MOSIS currently offers only n-well processes or foundry-designated twin-
well processes that from the design and process flow standpoints are equivalent to 
n-well processes. These twin-well processes may have options (deep n-well) that 
provide independently isolated p-wells. For all of these processes at this time use 
the technology code SCN. SCP is currently not supported, and SCE is treated 
exactly as SCN.  

 
SCN6M_DEEP: Scalable CMOS N-well, 6 metal, 1 poly, thick oxide 

option, and supports silicide block. MiM (Cap_Top_Metal, also known as Metal 5 
Prime, to Metal 5) capacitors are available. Uses revised layout rules for better fit 
to sub-micron processes.  
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APPENDIX E. TANNER TOOLS DESCRIPTION 

A. OVERVIEW 

The following is a reproduction from the Tanner website and provides a general 

description of the suite of Tanner Tools Pro [3]. 

 
B. TANNER TOOLS 

1. Simulation Tools 

Analog Circuit Simulator 

T-Spice Pro™ offers fast and accurate simulation for analog and mixed 
analog/digital circuits. Full chip designs where more than 300,000 elements can 
be simulated. T-Spice includes standard SPICE models like the latest BSIM3 
models, and the advanced Maher/Mead model which scales to submicron lengths 
and is continuous from subthreshold to above-threshold operation.  

Waveform Viewer 

W-Edit streamlines and customizes graphical data representation using 
data files without modification from T-Spice and GateSim simulation runs. 
2. Frontend and Netlist 

Layout vs. Schematic 

LVS. accurately and efficiently compares two SPICE netlists. Element and 
node mismatches are quickly traced back to their origins and unresolvable nodes 
and devices are pinpointed. When trail matching is turned on, LVS. attempts to 
resolve ambiguous elements and nodes by assigning matches between a pair of 
elements or nodes. LVS. can use topological information, parametric values, or 
geometric values to compare netlists with a specified tolerance. The ability to 
specify pre- and post-iteration matching or parameter matching speeds up the 
comparison process. Other time saving features include the ability to queue and 
run verification in batch mode. 
3. Mask-Level Tools 

Layout Editor 
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L-Edit™ is a full-featured, high-performance, interactive graphical mask 
layout editor. L-Edit generates layouts quickly and easily, supports fully 
hierarchical designs, and allows an unlimited number of layers, cells, and levels 
of hierarchy. It includes all major drawing primitives and supports 90-degree, 45-
degree, and all-angle drawing modes. L-Edit offers advanced editing features such 
as edit-in-place, slice/merge, group/ungroup, window stretch editing, and reads 



and writes GDS II and CIF file formats. L-Edit also includes a unique cross-
section viewer that allows you to simulate and preview grow/deposit, 
implant/diffuse, and etch steps. 

Design Rule Checking 

L-Edit/DRC™ is a user-configurable design rule checker that can verify a 
full chip or just a specific region. Errors can be collated in a text file or reported 
on screen using error objects or error labels representing a description of the 
violated rule. Design rule setup uses lambda units that allow for easy rescaling for 
new technologies. The domain decomposition algorithm enables rapid checking 
of large designs. Easy portability across platforms allows you to move large DRC 
runs to higher performance or multitasking hardware.  

Device Extraction 

L-Edit/Extract™ creates SPICE-compatible circuit netlists from L-Edit 
layouts. It can recognize active and passive devices, subcircuits, and most 
common device parameters, including resistance, capacitance, device length, 
width, and extension rules. Full chip and region-only DRC is supported. DRC 
offers Error Browser and Object Browser functions for quickly and easily cycling 
through rule-checking errors, and supports 45-degree and 90-degree geometry. 
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